Humans and computer

Behaviour 000000 Predict behaviour from digital traces

Traffic flow

## Symulacje złożonych systemów społecznych modelowanie zachowania ludzkiego

### @ GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków Rafał Kucharski rafal.kucharski@uj.edu.pl https://rafal-kucharski.u.matinf.uj.edu.pl/







| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Agenda<br>this talk  |                     |                                       |              |



What human individuals usually do? decision

What groups of humans (society) usually do? society

#### Cases

- discrete choice models Multinomial Logit Model
- social networks Behavioural Profiling
- traffic flow models Traffic Microsimulation

#### Leitmotif



|                     | Behaviour | Predict behaviour from digital traces | Traffic flow |
|---------------------|-----------|---------------------------------------|--------------|
| 0000                | 000000    | 000                                   | 000000       |
| Agenda<br>this talk |           |                                       |              |

# Idea What computers (and Computer Scientists) usually do? optimization What human individuals usually do? decisions 2 discrete choice models - Multinomial Logit Model social networks - Behavioural Profiling traffic flow models - Traffic Microsimulation

#### Leitmotif



| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Agenda               |                     |                                       |              |
| this talk            |                     |                                       |              |



- What human individuals usually do? decisions
- What groups of humans (society) usually do? society.

#### Cases

- discrete choice models Multinomial Logit Model
- social networks Behavioural Profiling
- traffic flow models Traffic Microsimulation

#### Leitmotif



| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Agenda               |                     |                                       |              |
| this talk            |                     |                                       |              |



- What human individuals usually do? decisions
- What groups of humans (society) usually do? society.

## Cases

- discrete choice models Multinomial Logit Model
- social networks Behavioural Profiling
- traffic flow models Traffic Microsimulation

#### Leitmotif



| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Agenda               |                     |                                       |              |
| this talk            |                     |                                       |              |



- What human individuals usually do? decisions
- What groups of humans (society) usually do? society.

## Cases

- discrete choice models Multinomial Logit Model
- social networks Behavioural Profiling
- traffic flow models Traffic Microsimulation

## Leitmotif



| Humans and computers      | Behaviour<br>000000 | Predict behaviour from digital traces |  |
|---------------------------|---------------------|---------------------------------------|--|
| myself<br>Rafał Kucharski |                     |                                       |  |

- now: associate. prof, Jagiellonian University, Faculty of Math. and CompSci, GMUM, prof. Jacek Tabor
- 2023-2028 ERC Starting Grant COeXISTENCE 3 PhDs + PostDoc; Reinforcement Learning
- 2023-2026 Horizon Europe SUM 2 PhDs + PostDoc; Transport Planning
- 2021-2024 NCN OPUS Post-corona shared mobility 2 PhDs + PostDoc; Network Science+Optimisation
  - past: PostDoc @ TU Delft working in Critical MaaS ERC Starting Grant
    - shared rides algorithms ExMAS
    - agent based model MaasSim
  - past<sup>2</sup>: assist. prof @ Politechnika Krakowska, prof. Andrzej Szarata
  - PhD: DTA, La Sapienza Rome, prof. Guido Gentile
- outside academia:
- R&D software developer (PTV SISTeMA, Rome)
- transport modeller (models for Kraków, Warsaw and more)
- data scientist, ML engineer (NorthGravity)





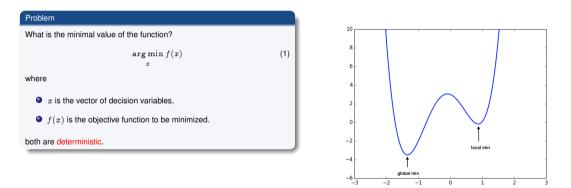
Fraffic flow

## Humans and computers



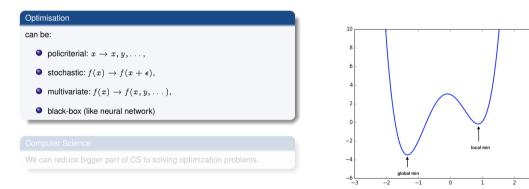


| Humans and computers | Behaviour | Predict behaviour from digital traces | Traffic flow |
|----------------------|-----------|---------------------------------------|--------------|
| 0000                 |           |                                       |              |
| Optimisation         |           |                                       |              |



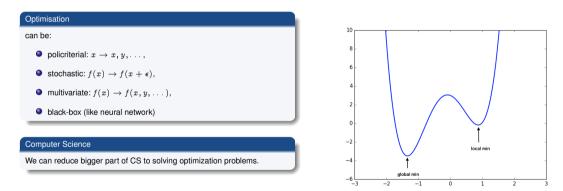


| Humans and computers  | Behaviour | Predict behaviour from digital traces | Traffic flow |
|-----------------------|-----------|---------------------------------------|--------------|
| 0000                  | 000000    | 000                                   | 000000       |
| Optimisation          |           |                                       |              |
| finding optimal value |           |                                       |              |





| Humans and computers  | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|-----------------------|---------------------|---------------------------------------|--------------|
| Optimisation          |                     |                                       |              |
| finding optimal value |                     |                                       |              |





| Humans and computers<br>○OO● | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|------------------------------|---------------------|---------------------------------------|--------------|
| Discrete Choice              |                     |                                       |              |

## Problem

Given a weighted network G(N, A) find a path (sequence of nodes  $n \in N$ ) from origin o to destination d

## Computers

## Shortest Path Choice

Define objective function (e.g. distance or more generically a cost  $c(a) : a \in A$ ) and propose an algorithm to find a solution.

e.g. Dijkstra - which deterministically and reliably outputs an optimal path.



## Humans

#### **Discrete Choice**

Each agent *i* selects the optimal path *k* from her origin  $o_i$  to destination  $d_i$  at her departure time  $\tau$ :

$$k_{od,i} = \underset{k \in K_{od}}{\arg\min} \sum_{a \in k} c_{a,i}$$
(2)



| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Discrete Choice      |                     |                                       |              |
| Path choice          |                     |                                       |              |

## Problem

Given a weighted network G(N, A) find a path (sequence of nodes  $n \in N$ ) from origin o to destination d

## Computers

## Shortest Path Choice

Define objective function (e.g. distance or more generically a cost  $c(a) : a \in A$ ) and propose an algorithm to find a solution.

e.g. Dijkstra - which deterministically and reliably outputs an optimal path.



## Humans

## **Discrete Choice**

Each agent *i* selects the optimal path *k* from her origin  $o_i$  to destination  $d_i$  at her departure time  $\tau$ :

$$k_{od,i} = \underset{k \in K_{od}}{\arg\min} \sum_{a \in k} c_{a,i}$$
(2)



# Behaviour





| Humans and computers | Behaviour<br>○●0000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Discrete Choice      |                     |                                       |              |
| Example              |                     |                                       |              |

## Problem

There are two products.

Cheap, nice and low quality

expensive, ugly and high quality

which is optimal?





| Humans and computers | Behaviour  | Predict behaviour from digital traces | Traffic flow |
|----------------------|------------|---------------------------------------|--------------|
|                      | 000000     |                                       |              |
| Rational utility     | maximisers |                                       |              |

## in path choice

## Rational

Let's assume all humans are rational:

$$\Pr(k|od, i) = \Pr\left(c_{k,i} = \min_{\substack{k' \in K_{od}}} c_{k',i}\right)$$

i.e. we take the best option.

## Costs

Each path candidate has a given:

- length
- travel time
- cost (fare)
- comfort factor

## o . . .

## Perceived costs

#### utility

length and travel time are physical cost is subjective, in discrete choice called Utility

$$U_{k,i} = \beta_{0,i} + \beta_{t,i}t_k + \beta_{c,i}c_k + \cdots + \varepsilon$$

- $\beta_0$  alternative-specific constant, i.e. taste variation, i.e. sentiment
- ε random term
- $\beta_t$  value of time (10€/h)
- c value of money



| Humans and computers | Behaviour<br>OOOOOO | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Rational utility n   | naximisers          |                                       |              |
| in path choice       |                     |                                       |              |

## Rational

Let's assume all humans are rational:

$$\Pr(k|od, i) = \Pr\left(c_{k,i} = \min_{k' \in K_{od}} c_{k',i}\right)$$

i.e. we take the best option.

### Costs

Each path candidate has a given:

- length
- travel time
- cost (fare)

o . . .

comfort factor

## Perceived costs

## utility

length and travel time are physical cost is subjective, in discrete choice called Utility

$$U_{k,i} = \beta_{0,i} + \beta_{t,i}t_k + \beta_{c,i}c_k + \cdots + \varepsilon$$

- $\beta_0$  alternative-specific constant, i.e. taste variation, i.e. sentiment
- *c* random term
- $\beta_t$  value of time (10€/h)
- $\beta_c$  value of money



Studencki Festiwal Informatyczny - 04.04.2024 - Rafał Kucharski - UJ - Complex social systems

| Humans and computers | Behaviour | Predict behaviour from digital traces | Traffic flow |
|----------------------|-----------|---------------------------------------|--------------|
|                      | 000000    |                                       |              |
| Discrete choice      | theory    |                                       |              |

## Key concepts

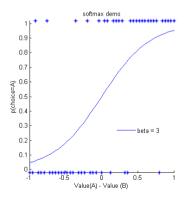
## Non-determinism

we can reasonably well **predict** the probability of selecting an option a by individual i, yet there is always non-determinism. Probabilities only asymptotically approach to 0 and 1.

## Heterogeneity

We are different, each of us has its' own:

- $\beta_{0,i}$  alternative-specific constant, i.e. taste variation, i.e. sentiment
  - € random term
- $\beta_{t,i}$  value of time
- $\beta_{c,i}$  value of money





| Humans and computers | Behaviour | Predict behaviour from digital traces | Traffic flow |
|----------------------|-----------|---------------------------------------|--------------|
|                      | 000000    |                                       |              |
| Discrete choice t    | heory     |                                       |              |

Nobel prize

Daniel McFadden won the Nobel prize in 2000 for his pioneering work in developing the theoretical basis for discrete choice.

## Discrete choice theory

Discrete choice models statistically relate the choice made by each person to the attributes of the person and the attributes of the alternatives available to the person.

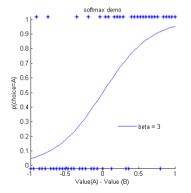
## Logit model

assumption:

 $\varepsilon \approx Gumbel(0, \sigma)$ , yields

Probability of selecting option a in the choice set C by individual i is:

$$p_{a,i} = \frac{\exp \mu U_{a,i}}{\sum_{a' \in C} \exp \mu U_{a',i}}$$





| Humans and computers |
|----------------------|
| Estimation           |

#### Datasets

Bigdata

| bilD | personiD | panelID | choice | ivetWalk | ivttBike | ivttCar | ivtfTransit | ovttWalk | ovttžike | ovttCar | ovttTransit | costétaik | costžike | costCar | costTransit | betalvtt     | betaOvtt    |
|------|----------|---------|--------|----------|----------|---------|-------------|----------|----------|---------|-------------|-----------|----------|---------|-------------|--------------|-------------|
|      | 1        | 1       | 3      | 0        | 0        | 58      | 72          | 96       | 109      | 10      | 12          | 0         | 0        | 5       | 1           | -0.373273721 | -1.0664194  |
|      | 1        | 2       | 3      | 0        | 0        | 38      | 42          | 165      | 55       | 0       | 15          | 0         | 0        | 7       | 3           | -0.62497503  | -1.11962612 |
|      | 1        | 3       | 3      | 0        | 0        | 56      | 65          | 145      | 63       | 1       | 16          | 0         | 0        | 3       | 1           | -0.643188316 | -1.17405951 |
|      | 1        | 4       | 3      | 0        | 0        | 19      | 20          | 105      | 37       | 9       | 15          | 0         | 0        | 4       | 1           | -0.438671827 | -1.2483244  |
|      | 1        | 5       | 3      | 0        | 0        | 54      | 81          | 185      | 41       | 2       | 19          | 0         | 0        | 5       | 3           | -0.287124529 | -0.8446595  |
|      | 1        | 6       | 3      | 0        | 0        | 41      | 35          | 68       | 30       | 8       | 22          | 0         | 0        | 3       | 3           | -0.257752721 | -0.5503510  |
|      | 1        | 7       | 3      | 0        | 0        | 27      | 33          | 106      | 25       | 3       | 13          | 0         | 0        | 2       | 0           | -0.569873118 | -0.7645977  |
|      | 1        | 8       | 4      | 0        | 0        | 18      | 21          | 163      | 41       | 8       | 12          | 0         | 0        | 6       | 1           | -0.369689557 | -1.2614031  |
|      | 1        | 9       | 3      | 0        | 0        | 24      | 22          | 66       | 42       | 10      | 16          | 0         | 0        | 3       | 3           | -0.096837917 | -1.0250720  |
|      | 1        | 10      | 3      | 0        | 0        | 14      | 17          | 35       | 27       | 5       | 24          | 0         | 0        | 3       | 2           | -0.191661813 | -0.6355008  |
|      | 2        | 1       | 1      | 0        | 0        | 13      | 11          | 0        | 0        | 4       | 19          | 0         | 0        | 1       | 2           | -0.02980754  | -0.3975238  |
|      | z        | Z       | 3      | 0        | 0        | 43      | 49          | 135      | 31       | 4       | 14          | 0         | 0        | 4       | 4           | -0.22930545  | -0.9152449  |
|      | 2        | 3       | 4      | 0        | 0        | 50      | 42          | 1142     | 84       | 9       | 11          | 0         | 0        | 6       | 1           | -0.491108147 | -0.6276121  |
|      | Z        | 4       | 1      | 0        | 0        | 22      | 23          | 18       | 20       | 6       | 21          | 0         | 0        | 5       | 2           | -0.484219256 | -0.8892119  |
|      | 2        | 5       | 3      | 0        | 0        | 18      | 18          | 61       | 29       | 2       | 13          | 0         | 0        | 4       | 0           | -0.617233817 | -1.4411701  |
| 5    | 2        | 6       | 2      | 0        | 0        | 17      | 21          | 167      | 21       | 10      | 15          | 0         | 0        | 3       | 1           | -0.136576508 | -0.8285006  |
|      | 2        | 7       | 3      | 0        | 0        | 34      | 42          | 179      | 63       | 3       | 19          | 0         | 0        | 5       | 2           | -0.427847708 | -1.0145820  |
|      | z        | 8       | 3      | 0        | 0        | 51      | 51          | 84       | 37       | 0       | 16          | 0         | 0        | 6       | 1           | -0.433200047 | -1.4189009  |
|      | 2        | 9       | 4      | 0        | 0        | 44      | 35          | 531      | 177      | 5       | 15          | 0         | 0        | 9       | 3           | -0.524877465 | -0.9716775  |

## Binary classifier

Predict the binary (0/1 value) d6922a778401

## Machine Learning

Lately, instead of classical methods (like BIOGEME's max log-likelihood) neural networks are used to classify choices - still in infancy.

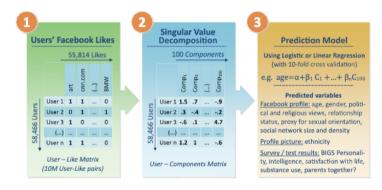


## Predict behaviour from digital traces





| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces<br>○●○ | Traffic flo |
|----------------------|---------------------|----------------------------------------------|-------------|
| Internet privacy     |                     |                                              |             |





<sup>1</sup> Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behaviour. Proceedings of the national academy of sciences, 1 Kir/, 5802-5805.

What Facebook likes tell about us?1

|                                  | Behaviour        | Predict behaviour from digital traces | Traffic flow |
|----------------------------------|------------------|---------------------------------------|--------------|
|                                  |                  | 000                                   |              |
| Internet privacy                 |                  |                                       |              |
| What Facebook likes tell about u | JS? <sup>2</sup> |                                       |              |

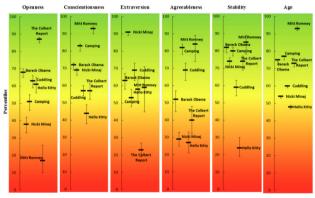


Fig. 51. Average levels of five personality traits and age of the users associated with selected Likes presented on the percentile scale. For example, the average extraversion of users associated with "The Colbert Report" was relatively low: it was lower only for 23% of other Likes in the sample. Error bars signify 95% confidence interval of the mean.

<sup>2</sup>Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital record the human behaviour. Proceedings of the national academy of sciences, 110(15), 5802-5805.

erc

# Traffic flow





|             | 000000                                |
|-------------|---------------------------------------|
| Phantom jam | i i i i i i i i i i i i i i i i i i i |

Let's drive around the circle at constant speed



| Humans and computers | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow |
|----------------------|---------------------|---------------------------------------|--------------|
| Phantom jam          |                     |                                       |              |



#### Video

https://youtu.be/FW9VkoibWDw?si=a0qexb-zSMxPxLwY&t=25

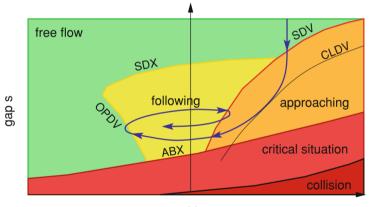
Let's drive around the circle at constant speed

## What can go wrong?

Why there was a traffic breakdown? Why we couldn't do such an easy task and led to the phantom jam?



| Humans and computers | Behaviour | Predict behaviour from digital traces | Traffic flow |
|----------------------|-----------|---------------------------------------|--------------|
| 0000                 | 000000    | 000                                   | 000000       |
| Car following Mo     | del       |                                       |              |
| Wiedemann            |           |                                       |              |



approaching rate  $\Delta v$ 



| Humans and computers      | Behaviour<br>000000 | Predict behaviour from digital traces | Traffic flow<br>0000●0 |
|---------------------------|---------------------|---------------------------------------|------------------------|
| Microsimulation           |                     |                                       |                        |
| PTV Vissim, SUMO, Aimsun, |                     |                                       |                        |



https://www.youtube.com/watch?v=bqF-Hyovg9E&t=3s



| Humans and computers | Behaviour | Predict behaviour from digital traces | Traffic flow |
|----------------------|-----------|---------------------------------------|--------------|
|                      |           |                                       | 000000       |
| Thank you!           |           |                                       |              |

Thank you for your attention,

welcome to discuss

Rafał Kucharski

```
rafal.kucharski@uj.edu.pl
```

## Acknowledgements

This research was funded by the COeXISTENCE project (grant number 101075838), which is financed by the European Research Council.

