Dynamics of two-sided mobility markets (like Uber) in urban mobility

Rafał Kucharski rafal.kucharski@uj.edu.pl https://rafal-kucharski.u.matinf.uj.edu.pl/

Agenda			
00000	00000000	0000	000

myself

- Complex System of Urban Mobility
- Data in Urban Mobility
- State-of-the-art
- Gaps

- Two-sided markets
- MaaSSim
- Decisions
- Learning

Summary

• Can we use complex systems theory to improve our understanding?

Urban mobility	Agent-based simulation	Case-studies	Summary 000
myself Rafał Kucharski			
now:	assist. prof, Jagiellonian University, Facut and CompSci, GMUM	ly of Math.	
2021-2024	NCN OPUS - Post-corona shared mobility PostDoc.	2 PhDs +	
past:	PostDoc @ TU Delft working in Critical M Starting Grant of prof. Oded Cats	IaaS <mark>ERC</mark>	
	shared rides algorithms ExMAS agent based model MaasSim		

- past: Assistant Professor @ Kraków University of Technology, Poland
- PhD: Modelling Rerouting Phenomena in DTA (with prof. Guido Gentile, Rome)
- outside: R&D software developer (PTV SISTeMA) transport modeller (models for Kraków, Warsaw and more)

data scientist (NorthGravity)

City

complex social system, where thousands of agents travers multimodal transport networks, to reach their destination and supply their travel needs.

Decision-makers (travellers + drivers)

heterogeneous,

non-deterministic,

adaptive (to information and experiences),

playing cooperative games for limited supplies

making subjectively optimal decisions everyday.

Transport network

Historically - static, concrete, infrastructure: tram lines, roads, rarely updated timetables.

real-time control and information.

two-sided mobility platforms (e.g. Uber),

(on-demand transit),

micro-mobility, shared mobility (scooters, carsharing, city-bikes),

connected autonomous vehicles (CAVs).

City

complex social system, where thousands of agents travers multimodal transport networks, to reach their destination and supply their travel needs.

Decision-makers (travellers + drivers)

heterogeneous,

non-deterministic,

adaptive (to information and experiences),

playing cooperative games for limited supplies

making subjectively optimal decisions everyday.

Transport network

Historically - static, concrete, infrastructure: tram lines, roads, rarely updated timetables. Now - complex adaptive distributed structure:

real-time control and information,

two-sided mobility platforms (e.g. Uber),

(on-demand transit),

micro-mobility, shared mobility (scooters, carsharing, city-bikes),

connected autonomous vehicles (CAVs).

Case-studie

City

complex social system, where thousands of agents travers multimodal transport networks, to reach their destination and supply their travel needs.

Decision-makers (travellers + drivers)

heterogeneous,

non-deterministic,

adaptive (to information and experiences),

playing cooperative games for limited supplies

making subjectively optimal decisions everyday.

Transport network

Historically - static, concrete, infrastructure: tram lines, roads, rarely updated timetables. Now - complex, adaptive, distributed structure:

real-time control and information,

two-sided mobility platforms (e.g. Uber),

(on-demand transit),

micro-mobility, shared mobility (scooters, carsharing, city-bikes),

connected autonomous vehicles (CAVs).

Urban me	obility
0000	

Data

Data:

mobility traces (np. NYC Citi Bike, Uber Movement, Twitter, itp.)

OpenData (np. NYC, Warszawa, Londyn, Amsterdam)

traffic (ITS, traffic control)

cell-phone data (Origin-Destination matrix be-

tween powiats in Poland)

smart public transport tickets (SmartCard data, WMATA, TfL)

stated and revealed behaviour (Stated Preference, Revealed Preference),

datasets

millions of publicly available records of various structures

Modelling urban mobility

State-of-the-art in models and software

BIOGEME

Estimating discrete-choice models (travel behaviour) from statedpreference (experiments) and revealed preference (observations) data.

MATSim

MATSim is an open-source framework for implementing large-scale agent-based transport simulations.

Aimsun

Microscopic demand and traffic flow through the capacitated network in real-time.

PTV Visum

Travel demand models - macroscopic OD matrix estimation: trip generation, trip distribution, mode choice, equilibrium assignment.

Urban mobility	
00000	

Modelling urban mobility

Research gap - open questions

Research Gap

Stochastic, non-deterministic adaptive behaviour. We can simulate the system - rarely we ask about:

evolution trajectory

adaptation trajectory

stability

bifurcation

equilibrium

Agent-based simulation

	Agent-based simulation		
00000	0000000	0000	000
Two-sided platforms	S		

Two-sided mobility platform:

- two-sided supply (drivers, vehicles) and demand (travellers)
- platform connects supply and demand
- mobility offering travellers to supply their mobility needs (reach a destination)

	Agent-based simulation		
00000	00000000	0000	000
MaaSim			

https://github.com/RafalKucharskiPK/MaaSSim

an agent-based simulator, reproducing the dynamics of two-sided mobility platforms (like Uber and Lyft) in the context of urban transport networks.

It models the behaviour and interactions of two kinds of agents:

 $\ensuremath{\text{(i)}}$ travellers, requesting to travel from their origin to a destination at a given time, and

(ii) drivers, supplying their travel needs by offering them rides.

The interactions between the two agent types are mediated by the:

(iii) platform(s), matching demand and supply.

Both supply and demand are microscopic.

pip install maassim Kucharski R. and Cats O. MaaSSim – agent-based two-sided mobility platform simulator(2020, arxiv.org/pdf/2011.12827)

group of machin

	Agent-based simulation		
00000	0000000	0000	000
11 00			

MaaSSim

https://github.com/RafalKucharskiPK/MaaSSim

```
from MaaSSim.simulators import simulate, simulate_parallel
from MaaSSim.utils import get_config, load_G
from MaaSSim.utils import prep_supply_and_demand, collect_results
```

```
sim = simulate() # run MaaSSim simulation
sim.runs[0].trips # access the results
params = get_config('default.json') # load configuration
params.city = "Nootdorp, Netherlands" # modify it
inData = load_G(params) # load different network graph
params.nP = 50 # modify number of travellers
inData = prep_supply_and_demand(inData, params) # regenerate supply and demand
sim2 = simulate(inData, params) # rerun the simulation with new data and parameters
print('Simulated wait times: ()s and ()s.'.format(sim.res[0].pax_exp['WAIT'].sum(),
sim2.res(0).pax_exp['WAIT'].sum()) # compare some results
```

```
space = {AP=[5,10,20], NV = [5,10]} # define the search space to explore in experiments
simulate_parallel(inData, paramas, search.space = space) # run parallel experiments
res = collect_results(paramas.paths.dumps) # collect results from so mynailel experiments
```

```
def my_function(*=kwargs): # user defined function to represent agent decisions
    veh = kwargs.get('veh', None) # input
    sim = veh.sim # access to the simulation object
    if len(sim.runs)==0 or sim.res[last_run].veh_exp.loc[veh.id].nRIDES > 3:
        return False # if I had more than 3 rides yesterday I stay
    else:
        return True # otherwise I leave
```

sim = simulate(inData,params, f_driver_out = my_function) # run MaaSSim with user-defined function

	Agent-based simulation		
00000	00000000	0000	000
MaaSSim			
Use-case			

Let's simulate a system in which:

- travellers choose among public transport, ride-hailing (Uber) and ride-pooling
- In the platform or not of the platform of the pla
- In platform sets a fare and commission for drivers
- everyday agents learn from behaviour and adjust their decisions

	Agent-based simulation		
0000	000000000	0000	000

MaaSSim Agent routines

drivers

- · leaving the system
- · accepting requests
- · re-positioning

travellers

- · accepting offers,
- · selecting platform and modes,
- · leaving the system

platform

- setting prices
- · matching request

rearring research

	Agent-based simulation		
00000	000000000	0000	000
MaaSSim			

Discrete choice model (multinomial logit model)

 $p_{i,m,d} = \frac{\mathrm{e}^{U_{i,m,d}}}{\sum_{a \in A} \mathrm{e}^{U_{i,a,d}}}$

Utility

Decisions

$$U_{i,m,d} = \beta_t t_{i,m,d} + \beta_c c_{i,m,d} + \mathsf{ASC}_m + \varepsilon_i$$

Utility (mixed logit model)

$$U_{i,m,t} = \beta_{t,i} t_{i,m,t} + \beta_{c,i} c_{i,m,t} + \mathsf{ASC}_{m,i} + \varepsilon_i$$

- i traveller
- m alternative $\in A$
 - d day
- c, t cost and time
 - β parameters
- ASC alternative specific constant
 - U expected utility
 - \overline{U} experienced utility
 - € error term

	Agent-based simulation		
00000	000000000	0000	000
Decisions			

travellers

Interpretation

- human behaviour modelling (discrete choice model),
 evolution and adaptation
- (reinforcement learning),
- · decision support.

drivers

- \cdot modelling actual human behaviour
- · decision support
- · optimal actions
- (autonomous vehicles)

platform

- market actions
 (game-theory)
 distributed system
- (control-theory)

	Agent-based simulation		
00000	00000000	0000	000
Learning			

Using experience to adjust decisions

Exponential smoothing

$$U_d = \alpha U_{d-1} + (1-\alpha)\overline{U}_{d-1}$$

History decay

 $U_d = \sum_{t=0}^n U_t * e^{(-\alpha t)}$

	Agent-based simulation	Case-studies	
00000	00000000	•000	000

WFAiS Seminar, Jan 2022 - Rafał Kucharski - Urban Mobility

	Agent-based simulation	Case-studies	
00000	00000000	0000	000
MaaSSim			

Figure 7. The effect of platform commission rate on the evolution of (a) expected income of registered drivers as ratio of their reservation wage, (b) the share of requests that are satisfied, (c) the average waiting time for pick-up for travellers, (d) daily participation volumes, (e) the total number of registered drivers, and (f) daily platform profit

	Agent-based simulation	Case-studies	
00000	00000000	0000	000
MaaSSim			

00000000	0000	000
	Case-studies	
	Agent-based simulation	Agent-based simulation Case-studies 000000000 000●

MaaSSIM Case-studies

q:300 r:30

q:300 x:60

WFAiS Seminar, Jan 2022 - Rafał Kucharski - Urban Mobility

Summary

	Agent-based simulation		Summary
00000	00000000	0000	000
Open-questions			

Potential

Leverage on complex science:

experiments

models

measures, KPIs

for better understanding of complex, behavioural, social systems of urban mobility.

Urban mobility	Agent-based simulation	Case-studies	Summary
00000	00000000	0000	000
Questions Discussion			

Thank you! dr inż. Rafał Kucharski, GMUM @ WMil @ UJ, rafal.kucharski@uj.edu.pl¹

¹ This research was funded by National Science Centre in Poland program OPUS 19 (Grant Number 2020/37/B/HS4/01847)